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Recurrance and Transience

Recurrance and Transience
Definitions: Given Q a site i ∈ I is recurrent if

Pi({t : Xt = i} is unbounded) = 1

and is transient if

Pi({t : Xt = i} is unbounded) = 0.

It is immediately clear that i is recurrent for Q if and only if i is recurrent
for the jump chain with transition matrix Π. In fact we have

Theorem
(i) i is recurrent for (Xt)t≥0 if it is recurrent for (Yn)n≥0,
(ii) i is transient for (Xt)t≥0 if it is transient for (Yn)n≥0,

(iii) Each site is either transient or recurrent
(iv) Transience or Recurrence are class properties.

The theorem is immediate from our Jump chain representation. We will,
as before, speak of transient or recurrent chains if all sites i are so. In
particular we will speak of transient/recurrent chains if Q is irreducible.
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Expected time at i
Definition

Given Q Markov chain (Xt)t≥0 , we write Ti for inf{t ≥ J1 : Xt = i}. It is
immediate that

i is recurrent if and only if i is absorbing or Pi(Ti <∞) = 1.

We have the following analogies of the Chapter 1 criterion for
recurrence/transience

Theorem
If i is recurrent if and only if

∫∞
0

Pii(t)dt =∞

Proof:
By Fubini’s Theorem

∫∞
0

Pii(t)dt = Ei(
∑

k≥0 IYk=iSk+1) =∑
k≥0 Ei(IYk=iSk+1). But given (Yk)k≥0 the Sk are exponential random

variables of appropriate parameter. In particular if Yk = i , then Sk+1) is
an exponential qi random variable of expectation 1/qi , so independence
yields

∫∞
0

Pii(t)dt = 1
qi

∑
k≥0 Pi(Yk = i) which is finite or infinite

according to whether i is transient or recurrent by Chapter 1.
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The h Skeleton

For a Markov chain (Xt)t≥0, the discrete time process (Zn)n≥0 ≡ (Xnh)n≥0
is a Markov chain by the semigroup characterization of our Markov chain
X with transition matrix given by Pij(h) (Strictly speaking (when
explosions are possible, this Matrix is a sub probability matrix but if this
bothers you simply adjoin a value ∞ to I .

Theorem
for any h > 0 and i ∈ I , i is recurrent for X if and only if i is recurrent for
Z .
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Proof:
If i is transient for X then Pi a.s. the times t for which Xt = i form a
bounded set. This certainly implies that the n such that Zn = i form a
bounded (which is to say finite) set under Pi . That is i is transient. If i is

recurrent for X then
∫∞
0

Pii(t)dt =
∑

n≥0
∫ (n+1)h

nh
Pii(t)dt =∞. But by

the semigroup property

∀t ∈ [nh, (n + 1)h]Pii((n + 1)h) ≥ Pii(t)e−q
i ((n+1)h−t) ≥ Pii(t)e−q

ih

Thus h
∑

n≥1 P(Zn = i) ≥ e−qih
∫ (n+1)h

nh
Pii(t)dt =∞. Again, we

conclude by Chapter 1 that i is recurrent for Z .
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Given our definition for i and j communicating, we can easily see that this
relation partitions I into communicating classes, as in Chapter 1. We say
the chain is irreducible if there is a single communicating class (and it is
easily seen that this is the same as the jump chain being irreducible). We
similarly speak of closed classes and absorbing sites (i is absorbing if and
only if qi = 0).
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Invariant probabilities, positive recurrence

Definition: Given Q-matrix Q, a measure λ on I is invariant if λQ = 0.

Note that IF I is finite and λ is invariant, then we have the backward
equation and

(λP(t))′ = λP(t)′ = λQP(t) = 0.

This implies that for all t > 0, λP(t) is constant and so for
t > 0, λP(t) = λP(0) = λ. That is to say if X0 has law λ, then so does
Xt for every t > 0. This justifies the description that λ is invariant .
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BUT

Things become less clear when I is countably infinite. We introduce the
example 3.5.4. We consider a Birth and Death chain on N. We note that
if for every i ≥ 0, νiqii+1 = νi+1qi+1i , then for every i

(νQ)i = νi+1qi+1i + νi−1qi−1i − νiqii

= νiqii+1 + νiqii−1 − νiqii
= νi(qii+1 + qii−1 − qii) = 0

But we can always (given qii−1, qii+1 > 0 for possible values) find ν
satisfying the detailed balence equations. For our example we take
∀i > 0, qii−1 = µqi and qii+1 = λqi for arbitrary qi . We also take
q01 = q0λ
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continued.

In this case the solution is a multiple of νi = 1
qi

(λ
µ

)i We now get concrete.

(i) 1 < λ
µ
< 2

(ii) qi = 2i

The condition that 1 < λ
µ

ensures that our jump chain is transient and so

all sites for our Markov chain (continuous time or discete) are transient.
Condition qi = 2i implies that

∑
i
1
qi
<∞ which implies (as is easily seen)

that the continuous time chain is explosive with probability one. Finally
λ
µ
< 2 and the choice of qi (ii) implies that

∑
i νi <∞ and so for some

positive c , cλ is an invariant distribution.
So we have an invariant distribution for which the chain is (highly)
transient. Indeed, for which νP(t) converges to 0 very rapidly as t
becomes large.
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Theorem
Let Π be the jump chain for associated Q-matrix Q. Then measure λ is
invariant for Q if and only if µ : µi = λiqi is invariant for Π

Proof: we use the fact that

∀i , j qi(πij − δij) = qij

(Check the special cases qi = 0 and i = j separately). So if Qλ = 0, then
for every i

∑
j λjqji = 0 =

∑
j λjqj(πji − δji) =

=
∑

j µj(πji − δji) =
∑

j µjπji − µi

We remark that this should not be unexpected in that if µ is a stationary
distribution for (suppose) irreducible jump matrix Π, then the long run
ratio of times spent (by the continuous time chain) in sites i and j

should be µi/qi
µi jqj

which ”ought” to be invariant for Q.

A second remark is that if
∑

i λi is finite, there is no reason why
∑

i λiqi
should not be infinite and vice versa.
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Recall

Theorem
For an irreducible recurrent Markov chain fix k ∈ I and define

γ(j) = Ek

(∑
r<Tk

IXr=j

)

Then
• γ(k) = 1
• 0 < γ(j) <∞
• γ is invariant.

and in this case γ is unique up to multiplication by positive constants.If
we do not have recurrence then if ν is an invariant measure with
ν(k) = 1, then ν ≥ γ.

From this we obtain immediately

Corollary
If Q is irreducible and recurrent then there exists an invariant measure λ
and it is unique up to positive multiples.
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Positive Recurrence and invariance
We have for i ∈ I , the return time inf{t ≥ S1 : Xt = i} is denoted by Ti .
Definition: A site i is positive recurrent if either qi = 0 or Ei(Ti) <∞.
Obviously if i is positive recurrent, then it is recurrent. Just as in Chapter
1, we have that i is positive recurrent if and only if

lim inf
t→∞

1

t

∫ t

0

Pii(s)ds > 0

if the chain is irreducible this is if and only if for any j

lim inf
t→∞

1

t

∫ t

0

Pji(s)ds > 0

If i leads to j

1

t

∫ t

0

Pjj(s)ds ≥ t − 2

t

1

t − 2

∫ t−2

0

Pji(1)Pii(s)Pij(1)ds > 0

This gives
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Theorem
For Q-matrix Q positive recurrence is a class property.

We now show that positive recurrence is related to invariant distributions

Theorem
For irreducible Q-matrix Q the following are equivalent

(i) The chain is positive recurrent
(ii) The chain is nonexplosvie and has an invariant distribution.

If either condition holds then Ei(Ti) = 1/(λiqi) for λ the invariant
distribution.

Remark the Birth and Death chain example shows that we need the
condition that Q be nonexplosive.
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Proof (i) implies (ii)

Let i be in I . It is positive recurrent under assumption (i). So it is
recurrent and the chain is nonexplosive. We define measure

µi
j = Ei(

∫ Ti

0

IXs=jds)

we easily have that µi
j = Ei(

∑
k≥0 Ik<Ni

IYk=jSk+1 which by description a)

of Markov chains is equal to 1
qj
Ei(
∑

k≥0 Ik<Ni
IYk=j). This is equal to γ ij/qj

where γ ij = Ei(
∑

k≥0 Ik<Ni
IYk=j is Π invariant. Thus by the preceding

Theorem , µi
j is an invariant measure for Q. But by definition∑

j µ
i
j = Ei(Ti) <∞ by assumption (i). Thus we have an invariant finite

measure, and so after dividing by the total mass, an invariant distribution.
(ii) is shown.
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Proof (ii) implies (i)

We suppose (ii). Let λ be an invariant distribution. Then by the preceding
Theorem, λjqj is an invariant measure for Π. Thus for i a fixed site in I ,
νj = λjqj/(qiλi) is invariant and νi = 1. So by Chapter 1 νj ≥ γ ij (γ

i as
above). We cannot yet claim equality as we do not yet know that the
chain is recurrent! But

mi =
∑
j

µi
j =

∑
j

γ ij/qj ≤
∑
j

νj/qj =
∑
j

λj/(qiλi)

= 1/(qiλi) <∞. So the Markov chain is positive recurrent. That is (i).
But since it is recurrent we can go back and have equality between ν and
γ ij which gives equality between mi and 1/(qiλi).
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Invariant distributions and stationarity
To finish this section it remains to show

Theorem
For irreducible recurrent Q-matrix Q, λ a measure and s > 0, the
following are equivalent

(i) λQ = 0
(ii) λP(s) = λ

The chain is recurrent and thus nonexplosive. From the preceding slides

µi
j = Ei(

∫ Ti

0

IXt=jdt)

is Q invariant. Thus it is a positive multiple of λ. So it is enough to show
that (i) and (ii) are equivalent for measure µi

j . The trick is to apply the
Strong markov property at Ti to see that

Ei(

∫ s

0

IXt=jdt) = Ei(

∫ Ti+s

Ti

IXt=jdt).
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Accordingly

µi
j = Ei(

∫ Ti

0

IXt=jdt) =

Ei(

∫ Ti

0

IXt=jdt)− Ei(

∫ s

0

IXt=jdt) + Ei(

∫ Ti+s

Ti

IXt=jdt)

which equals Ei(
∫ Ti+s

s
IXt=jdt). But we can rewrite this as

Ei(

∫ ∞
s

It<Ti+s IXt=jdt)

changing variables to u = t − s gives

= Ei(

∫ ∞
0

Iu<Ti
IXu+s=jdu) = Ei(

∫ ∞
0

Iu<Ti

∑
k

IXu=kPkj(s)du) =
∑
k

µi
kPkj(s)
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